

Reducing the energy footprint in the built environment

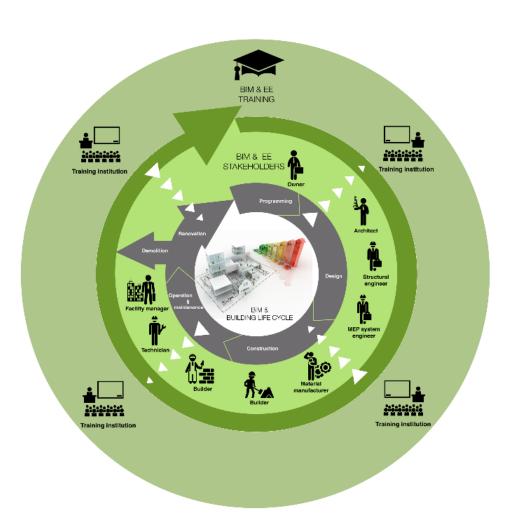
Speaker Title: Richard Hartless

Session Title:

BIMEET project

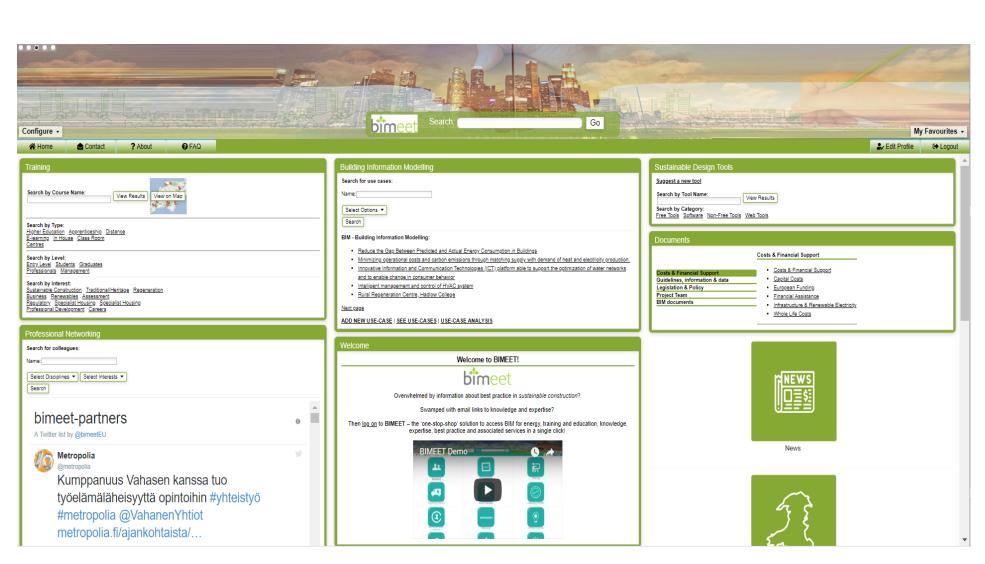
Contents:

BIMEET project


BIM-based EU-wide Standardized Qualification Framework For achieving Energy Efficiency Training

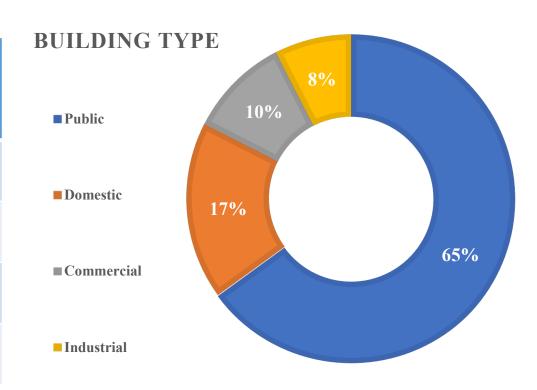
BIMEET concept

- BIMEET considers
 - Each stage of building's life-cycle
 - All actors involved
- To highlight specific skills required
 - For a global BIM approach
 - Enabling achieving EE in buildings
- BIM as a tool for improved multidisciplinary approach across trades
- BIM-based material for enhanced energy efficiency learning



BIMEET objectives

- BIMEET specifically focuses on BIM qualifications, in the perspective of NZEB and energy efficiency.
- Objectives
 - O1: Demonstrate the role of BIM in achieving energy efficiency in buildings across the whole value chain.
 - O2: Benchmark existing Europe-wide BIM (+EE) trainings
 - O3: Harmonize energy related BIM qualification and skills frameworks available across Europe with a view of reaching a global consensus
 - **O4:** Map identified skills, qualifications, accreditation into a BIM for energy efficiency national overlay
 - O5: Provide a robust online and open-access environment for BIMEET
 - O6: Ensure the long-term sustainability of the proposed BIMEET


BIMEET platform

BIMEET case studies

NO	Building Type	Many of use cases
1	Public	26
2	Domestic	7
3	Commercial	4
4	Industrial	3

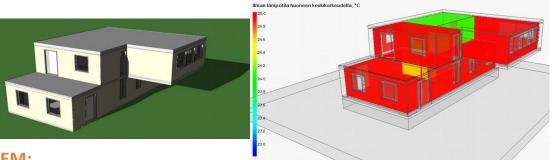
BIMEET case studies

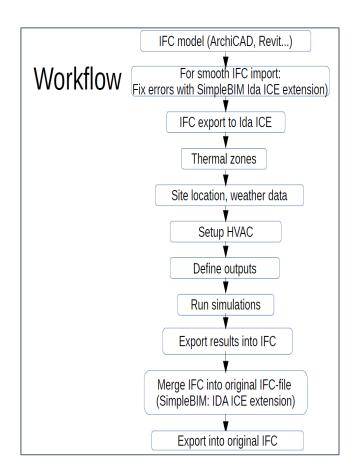
No.	Use cases/ Target discipline	Architecture design	Facility management	Mechanical engineer	Other	Impacts
1	Reduce the Gap Between Predicted and Actual Energy Consumption in Buildings					Reduction of 25% energy compared to baseline figures.
2	Minimizing operational costs and carbon emissions through matching supply with demand of heat and electricity production.					Leading to a 32% increase in profit and 36% reduction in CO2 emissions.
3	Intelligent management and control of HVAC system					Up to 30% of Energy Saving Up to 30% Emission reduction
4	Friendly and Affordable Sustainable Urban Districts Retrofitting (FASUDIR) - Heinrich-Lubke housing area, Frankfurt, Germany					GWP reduction of 60%. Operational energy consumption reduction of 35%
5	Friendly and Affordable Sustainable Urban Districts Retrofitting (FASUDIR) - Budapest Residential District					Operational energy reduced by 35% and energy running costs reduced by 35%
6	An innovative integrated concept for monitoring and evaluating building energy performance (the gap between predicted and actual building energy performance is addressed by the project).					Achieve building energy performance
7	Parametric design of a shelter roof in urban context					Early BIM for parametric optimization through simulations
8	Building As A Service					Optimize energy performance in the application domain of non-residential buildings
9	Delivering highly energy efficient hospital centre					41% reduction in fabric loss heat, 29% reduction in carbon emissions,15% reduction in overall energy usage
10	Shopping Center using around half the energy of a typical development					50 % energy savings, 50 % savings in water consumption
11	Design of energy-efficient library with high architectural goals					Energy optimization results impacted for the building and HVAC design
12	Use of Optimization tool to compare hundreds of concepts energy efficiency before actual design					Use of Optimization tool has the potential to save money and time while directing to more optimal energy efficiency solutions.

Summary of BIM training

E	BIM training	Clients	Facility and asset management	Design consultants (including technicians)	Contractors (including site managers)	Sub- contractors (including blue collar workers)	Students
	Awareness						
	0. Definition						
	1. Brief						
	2. Concept						
RIBA stage	3. Design						
	4. Technical						
	5. Construction						
	6. Handover						
	7. In use						
	Demolition						

Summary of BIM and EE training


	Integrated BIM and energy efficiency training	Clients	Facility and asset management	Design consultants (including technicians)	Contractors (including site managers)	Sub- contractors (including blue collar workers)	Students
	Awareness						
	0. Definition						
	1. Brief						
	2. Concept						
RIBA	3. Design						
stage	4. Technical						
	5. Construction						
	6. Handover						
	7. In use						
	Demolition						



BIM for energy knowledge management

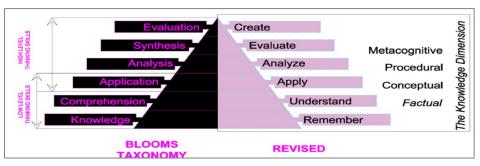
Development process included:

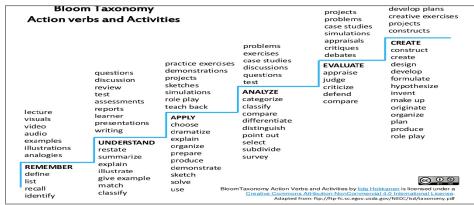
- BIM + EE case studies
- Enquiries to experts
- Tests of different tools (BIM->BEM->BIM)
- Existing BIM and EE courses
- Harvesting Twitter with algorithms
- Development of S-K-C and Learning outcomes

BIM to BEM: TESTING IDA-ICE

BIMEET Learning Outcomes

- LOs are attributed to individual educational components and to programmes as a whole
- LOs are specified in three categories as knowledge, skills and competence. This signals that qualifications

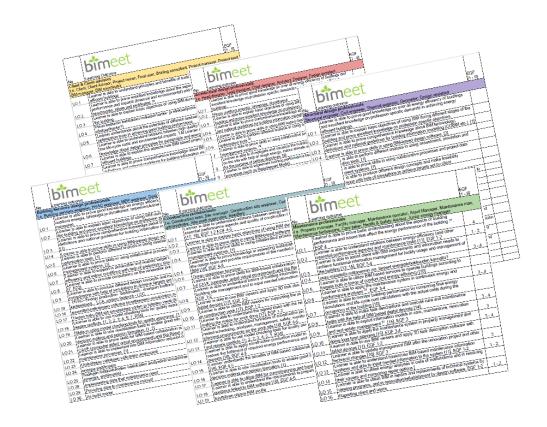

 in different combinations – capture a broad scope of LOs, including theoretical knowledge, practical and technical skills, and social competences where the ability to work with others will be crucial


Users' Guide, E. C. T. S. "Luxembourg: Publications Office of the European Union." DOI 10 (2015): 87192.

https://europass.cedefop.europa.eu/sites/default/files/ects-users-guide en.pdf.

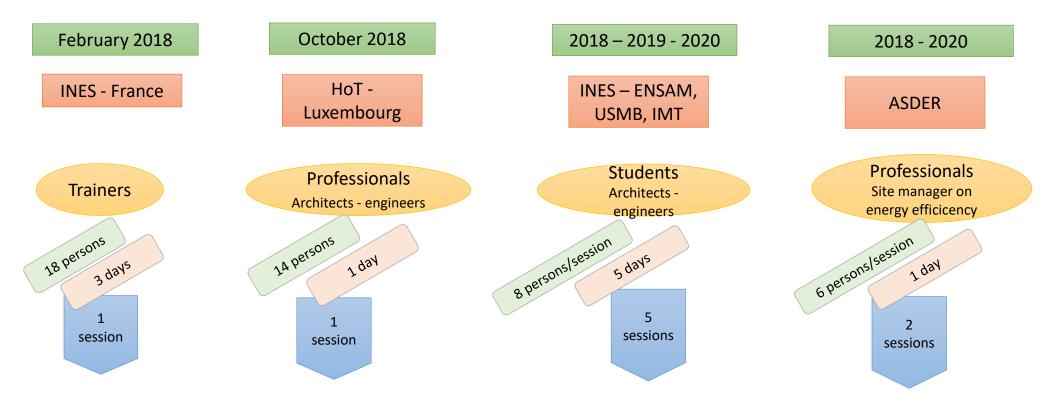
Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. *Theory into practice*, *41*(4), 212-218. lida Hokkanen 2015: https://www.slideshare.net/lidaHokkanen/bloom-taxonomy-action-verbs-and-activities

 Approach: Bloom's taxonomy is the most frequently used tool when developing LOs



BIMEET Learning Outcomes for main roles

- Client & Clients' advisors
- Architectural design roles
- Structural design roles
- Building services design roles
- Construction work roles
- Maintenance work roles



Report D3.2 – Definition of learning outcomes at the European level

BIM for energy efficiency training – In-class

BIM to EPC online course

Introduction	
Lesson 1	 Review of (2018) Regulations EPBD + EPC (EU) National EPC implementations (FIN, FRA, GR, LUX, UK)
Lesson 2	Added value of BIM in EPC assessment (EU)
Lesson 3	 Parameters needed for EPC calculations (geometry, equipment) (FIN, FRA, GR, LUX, UK) How to prepare/build BIM: What data should they have and in what form? (FIN, FRA, GR, LUX, UK) How to transfer the data from BIM to EPC tool (FIN, FRA, GR, LUX, UK)
Lesson 4	 Review of EPC tools (FIN, FRA, GR, LUX, UK) Use cases/Animated demos
Lesson 5	Next generation EPC (EU)
Summary	
Final exam	• Quiz

WP4 – TANGIBLE APPLICATION

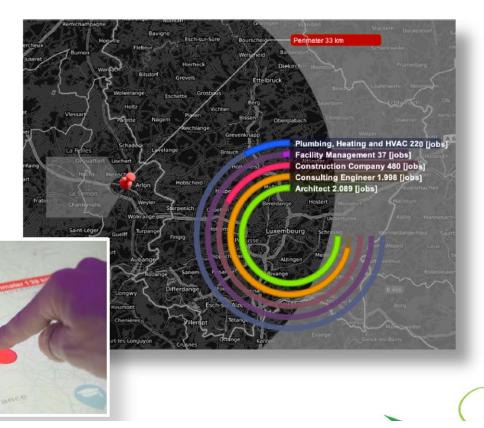
Putting BIM on the map

- Building a tool, supporting training institutions in:
 - 1. Finding the most appropriate venue location with respect to desired target audience.
 - 2. Determine market needs in terms of learning outcomes based on already available trainings.

WP4 – TANGIBLE APPLICATION

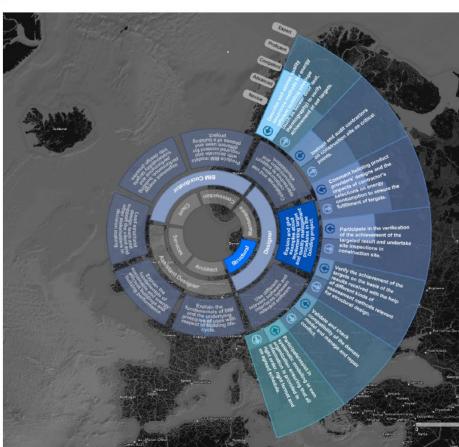
bineet (

Tangible Tables – Natural and collaborative User Interface



GEOREFERENCED MODEL

Spatial Querying – Finding your potential audience



GEOREFERENCED MODEL

Learning Outcomes

BIMEET label

- Developing a BIMEET label to badge training organisations as well BIM/EE courses that meet the Learning Outcomes
- Working with EU to identify Key Exploitable Results from the project and to maximise BIMEET's impact

